Abstract #360 | Oral or Poster presentation

Contrast agent-free diffusion weighted-MRI and T1/2 mapping for therapy response monitoring in murine pancreatic ductal adenocarcinoma (PDAC)

<u>Simon Baller</u>¹, Irina Heid¹, Geoffrey J. Topping², Katja Steiger^{3, 4}, Anna-Maria Schmidmüller¹, Felix Harder¹, Franz Schilling², Rickmer Braren^{1, 5}

Introduction

Pancreatic ductal adenocarcinoma is one of deadliest cancers worldwide¹. Non-invasive (semi)-quantitative MRI methods such as diffusion weighted imaging (DWI) or T1 and T2 mapping are important diagnostic tools for characterization of tissue composition and require no exogenous contrast agent application^{2,3}. This work aims to investigate the use of the ADC, T1 and T2 values in a preclinical trial of endogenous murine PDAC treated with the standard therapy protocol Gemcitabine(GEM)/Abraxane.

Methods

Tumor Model: 6 Ptft1a wt/cre; KRAS wt/G12D; p53 ft/ft mice, endogenous PDAC tumors.

Chemotherapy: Mice received 100 μ g/g GEM intraperitoneally and 30 μ g/g Abraxane intravenously (n=3), or vehicle (n=3), on day 0 (post scan) and day 2.

Imaging System: Small animal preclinical 7T MRI (Bruker/Agilent).

Imaging:

- -T2w RARE anatomical images;
- -DWI ADC maps (10 slices, 10 repetitions, 14 min, 0.35x0.35x1.75mm³);
- -Inversion-recovery RARE T1 maps (1 slice, 5 min, 0.58x0.58x3.5 mm³);
- -Multi-slice multi-echo T2 maps (10 slices, 5 min, 0.35x0.35x1.75 mm³);

Analysis: ADC, T1, and T2 maps were fit in MatLab and analysed in ITK-Snap (29 3D regions of interest (ROI) in ADC-Maps, 26 3D ROIs in T2-Maps and 8 2D ROIs in T1-Map). Statistical analysis was performed in GraphPad PRISM 7.0.

Results/Discussion

We established free-breathing abdominal multiparametric MRI comprising T1 and T2 mapping and DWI in a murine endogenous PDAC model (Fig. 1). Visually identified distinct tumor nodules revealed heterogeneous distribution of values in all analyzed modalities, which resembles the clinical situation.

1 jul 2021, 16:38:29 Page 1/3

¹ Technical University of Munich, Klinikum rechts der Isar, Institute of Diagnostic and Interventional Radiology, Munich, Germany

² Technical University of Munich, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich, Germany

Technical University of Munich, Klinikum rechts der Isar, Institute of Pathology, Munich, Germany

^{*} Technical University of Munich, Klinikum rechts der Isar, Comparative Experimental Pathology (CEP), Munich, Germany

⁵ German Cancer Consortium (DKTK) Partner Site Munich, Munich, Germany

Abstract #360 EMIM 2021 Abstract

Chemotherapy caused significant changes in all parameters at day 3 in the treatment group, in contrast to the vehicle group (mean values: $ADC_{G/A\ day0}=1.63\pm0.09\ *10^{-3}\ mm^2/s$; $ADC_{G/A\ day3}=1.69\pm0.08*10^{-3}\ mm^2/s$; $ADC_{veh\ day0}=1.56\pm0.14*10^{-3}\ mm^2/s$; $ADC_{veh\ day3}=1.51\pm0.09*10^{-3}\ mm^2/s$; $ADC_{G/A\ day0}=71\pm4\ ms$; $ADC_{G/A\ day3}=64\pm5\ ms$; $ADC_{veh\ day0}=65\pm6\ ms$; $ADC_{veh\ day3}=67\pm4\ ms$; $ADC_{veh\ day0}=2.3\pm0.2s$; $ADC_{veh\ day0}=$

Conclusions

We established a multiparametric quantitative MRI protocol without the need for exogenous contrast agent injection for therapy response monitoring in a clinically relevant preclinical PDAC model. Comparative analyses of regionally matched MRI-derived parameter values and histopathology will be applied and correlated with distinct molecular subtypes.

Acknowledgement

We would like to thank Irina Skuratovska, Martin Grashei and Sandra Sühnel for experimental support. We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation – 391523415, SFB 824).

Disclosure

I or one of my co-authors have **no financial interest** or **relationship** to disclose regarding the subject matter of this presentation.

Affix

References

- [1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021.
- [2] Heid I, Steiger K, Trajkovic-Arsic M, et al. Co-clinical Assessment of Tumor Cellularity in Pancreatic Cancer. Clin Cancer Res 2017;23:1461-1470.
- [3] Serrao EM et al. Magnetic resonance fingerprinting of the pancreas at 1.5 T and 3.0 T. Sci Rep 10:17563 (2020).
- [4] Trajkovic-Arsic M., Heid I., Steiger K., et al. Apparent Diffusion Coefficient (ADC) predicts therapy response in pancreatic ductal adenocarcinoma. Sci Rep 7:17038 (2017).

1 Jul 2021, 16:38:29 Page 2/3

EMIM 2021 Abstract

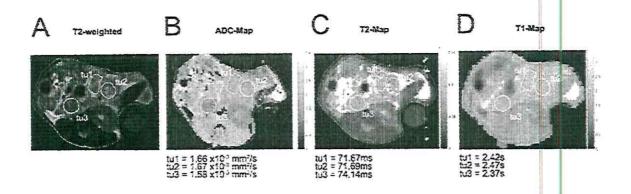


Figure 1: Multiparametric MRI consisting of T1, T2, and ADC mapping in murine endogenous PDAC.

A) Axial T2-weighted anatomical image of 3 different tumors. B) Monoexponential plus constant offset model fitted ADC-Map (10 b-values: 211-1519 s/mm²) C) T2-Map fit with a monoexponential plus constant model, 10 echo times up to 160 ms D) T2-Map fit with a monoexponential plus constant model, 10 inversion times up to 3.76s

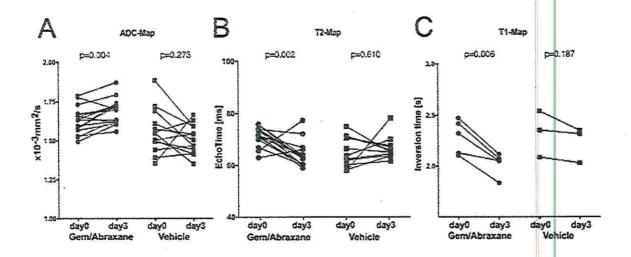


Figure 2 Therapy response monitoring with quantitative MRI parameters.

A) Mean ADC values. B) Mean T2 echo times. C) Mean T1 inversion times.

1 Jul 2021, 16:38:29 Page 3/3