Hyperpolarized [1-13C]pyruvate Magnetic Resonance Spectroscopic Imaging (MRSI) identifies pancreatic cancer subtypes in mice <u>Irina Heid</u>¹, Moritz Mayer¹, Katja Peschke², Geoffrey J. Topping³, Katja Steiger⁴, Martin Grashei³, Maximilian Aigner³, Marija Trajkovic-Arsic⁵, Maximilian Reichert², Franz Schilling³, Rickmer Braren^{1, 6} ### Introduction Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with poor prognosis in need of non-invasive subtype biomarkers. Two main transcriptional subtypes have been identified: Classical and quasi-mesenchymal (QM)¹. The QM subtype is associated with increased glucose metabolism^{2,3}, high expression of monocarboxylate transporter 4 (MCT4)^{4,5} and can possibly be detected by metabolic imaging. We here present hyperpolarized (HP)-[1-¹³C]pyruvate chemical-shift imaging (CSI) in combination with Diffusion-Weighted Imaging (DWI) for QM subtype prediction in endogenous murine (m)PDAC. ## Methods Subjects: 24 Ptf1a^{Cre/wt};LSL-KRAS^{G12D/wt};Tp53^{f/ff} tumor mice, 29 distinct tumor nodules. MR System: 7T MRI (Bruker/Agilent) with a dual-tuned ¹H/¹³C 31mm volume coil. Proton Imaging: T₂-weighted anatomical RARE, DWI (0.25x0.25x1mm³; 12 b-values 12-1500 s/mm²). ¹³C Imaging: multi-frame single-slice axial 2D phase encoded CSI (2x2x3mm, TR=5s) with hyperpolarized [1-¹³C]pyruvate (80mM). **Histology:** Tumors were removed, formalin fixed, paraffin embedded, cut aligned to the axial imaging plane and histologically processed (H&E, MCT4). **Cytology:** Four cell lines were isolated from distinct tumor nodules, cultured under standard conditions (DMEM, 5mM glucose), processed and stained for Vimentin, MCT4, DAPI (Leica Confocal Microscope). **Analysis:** Data was analyzed using MATLAB and GraphPad Prism 7.0. ### Results/Discussion We observed high heterogeneity in the *in vivo* metabolic signal of complex endogenous mPDAC compared to orthotopically implanted mPDAC tumors derived from established murine cell lines⁵. Ratios of the area under the curves of lactate to pyruvate spectral peak time-courses (AUC/AUC_p) correlated well with the corresponding MCT4 staining (Fig. 1A-C). *In vivo* heterogeneity of AUC/AUC_p was independent of tumor Jul 1, 2021, 5:20:12 PM ¹ Technical University of Munich, Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Munich, Germany ² Technical University of Munich, Internal Medicine II, Klinikum rechts der Isar, Munich, Germany ³ Technical University of Munich, Department of Nuclear Medicine, School of Medicine, Klinikum rechts der Isar., Munich, Germany Technical University of Munich, Institute of Pathology, School of Medicine, Munich, Germany ⁵ West German Cancer Center, University Hospital Essen, Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), partner site Essen, Essen, Germany ⁶ German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany cellularity (Fig. 1D-F). Primary cells derived from AUC/AUC_p tumors (Fig. 1E, F, red) showed an elongated QM-like appearance (Fig. 2A), high Vimentin and MCT4 expression (Fig. 2B-D) and increased lactate dehydrogenase (LDH) activity *in vitro* (Fig. 2E), as compared to cuboid shaped AUC/AUC_p cells (Fig. 1E, F, blue and Fig. 2, blue). Multiparametric MRSI and DWI with HP-pyruvate may be a promising method for non-invasive detection of metabolic phenotypes and corresponding molecular subtypes in PDAC. ## Conclusions We confirmed the link of the QM subtype and MCT4 tissue expression in murine PDAC. We further show that the QM subtype can be detected by multiparametric MRSI/DWI with HP-pyruvate. Considering the observed metabolic heterogeneity in PDAC and its association with known molecular subtypes, implementing metabolic phenotyping in clinical routine might facilitate future patient stratification and treatment monitoring. # Acknowledgement We thank Irina Skuratovska and Marion Mielke for excellent technical support in this project. We acknowledge support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation – 391523415, SFB 824). ### Disclosure I or one of my co-authors have no financial interest or relationship to disclose regarding the subject matter of this presentation. # Affix # References - [1] Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 2011;17:500-3. - [2] Karasinska JM, Topham JT, Kalloger SE, *et al.* Altered Gene Expression along the Glycolysis-Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer. Clin Cancer Res 2020;26:135-146. - [3] Daemen A, Peterson D, Sahu N, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc Natl Acad Sci U S A 2015;112:E4410-7. - [4] Baek G, Tse YF, Hu Z, et al. MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep 2014;9:2233-49. - [5] Mayer M, Heid I, Topping GJ, et. al. Metabolic imaging-based subtype prediction in orthotopically transplanted murine pancreatic ductal adenocarcinoma. European Molecular Imaging Meeting, EMIM 2020. |u| 1, 2021, 5:20:12 PM Page 2/4 CSI with HP[1-13C]pyruvate detects metabolic heterogeneity of mPDAC in vivo. A: Axial T₂w abdominal images, HP[1-¹³C]pyruvate and HP[1-¹³C]lactate images at peak (25 s, 5 frames) and their metabolite time courses of mPDAC. B: Respective automated analysis mask of MCT4 (IHC) staining divided by median, scale bar 100µm. C: Spearman's correlations of AUC/AUC, ratios and MCT4 expression. D: H&E stains of PDAC and PDAC tumors. Scale bar 200µm. E, F: PDAC and PDAC subgroup comparison of mean ADC(D) and AUC/AUC, E) values. Blue and red dots represent tumors from which AUC/AUC, but (blue) and AUC/AUC, first (red) primary cell lines were derived. MCT4 expression correlates with classical and QM phenotype in primary tumor cell lines of mPDAC. A: Transmitted light microscopy images of cell lines derived from AUC/AUC $_p^{low}$ (blue) and AUC/AUC $_p^{high}$ (red) tumors. Note cuboid and elongated shape of AUC/AUC $_p^{low}$ and AUC/AUC $_p^{high}$ cells respectively. **B**: Representative images of co-stained immunofluorescence of MCT4 and Vimentin in the AUC/AUC $_p^{low}$ and AUC/AUC $_p^{high}$ cells. Scale bar 50 μ m. **C**, **D**: Quantification of the fluorescent signal in 6 images/cell line for MCT4 (**C**) and Vimentin (**D**) presented as Box-Whisker-Plot of min to max. **E**: LDH enzyme activity analysis in the AUC/AUC $_p^{low}$ and AUC/AUC $_p^{high}$ cells. Jul 1, 2021, 5:20:12 PM Page 4/4